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Abstract: By applying the theory of inequality on time scales, we obtain some sufficient conditions 
which guarantee the permanence of the following N-species competitive system with feedback 
controls 
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where ( ),ib t ( ),id t ( ),ir t ( ),ie t ( ),if t ( )ija t and ( )ijc t are all bounded non-negative almost periodic 
functions on  . 

1. Introduction 
Recently, the dynamic behaviors of Lotka-Volterra predator-prey system have been widely 

investigated. And it is important to know the existence of periodic solutions of competitive systems. 
In [1], Ahmad S. has proved that under some certain conditions 1( )x t is permanence and 2 ( )x t is 
extinction in the following two-species system 
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In order to search for certain schemes (such as harvesting procedure) to ensure system (1.1) 
coexists under the conditions obtained in [1]. Xiao et al. [2] consider the following feedback 
controlled system 

 

.

1 1 1 1 1 1 2 1 1
.

2 1 2 2 1 2 2 2 2
.

1 1 1 1 1
.

2 2 2 2 2 2

( ) ( )[ ( ) ( ) ( ) ( ) ( ) ( ) ( )],

( ) ( )[ ( ) ( ) ( ) ( ) ( ) ( ) ( )],

( ) ( ) ( ) ( ) ( ),

( ) ( ) ( ) ( ) ( ) ( )].

x t x t r t a t x t b t x t d t u t

x t x t r t a t x t b t x t d t u t

u t e t u t f t x t

u t h t e t u t f t x t

 = − − −


= − − +

 = − +

 = − −

  (1.2) 

Due to the various seasonal effects of the environmental factors in real life situation (e.g. 
seasonal effects of weather, food supplies, mating habits, harvesting, etc.), it is rational and practical 
to study the ecosystem with periodic coefficients[3-7].  

Up to now, few work has been done for multispecies competitive system on time scales which 
can unify continuous and discrete situations. In [8], the authors propose the concept of almost 
periodic time scales and the definition of almost periodic functions on almost periodic time scales. 
Based on these, our main aim in this paper is to study the permanence of the following system with 
feedback controls on time scales 
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where ,t∈   is an almost periodic time scale, ( ), 1,2, ,ix t i N= … is the density of species iX ; 
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( ), 1,2, ,iu t i N= … is feedback control; , ( )t ijb a t and ( )ijc t denote the intrinsic growth rate, death rate 
and inter-specific competition, respectively. ( ) ( ) ( ) ( ) ( ) ( ), , , , ,i i i i i ijb t d t r t e t f t a t and ( )ijc t are all 
bounded non-negative almost periodic functions on  . 

For an almost periodic function :f →  , we denote sup ( ), inf ( )M m

tt
f f t f f t

∈∈
= =


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the solutions of system (1.3) by 1 1( ) ( ( ), , ( ), ( ), , ( )) .T
N NX t x t x t u t u t= … …  
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2. Preliminaries 
Let   be a nonempty closed subset (time scale) of . The forward and backward jump operators 
, :σ ρ →  and the graininess µ  : +→   are defined, respectively, by 

( ) inf{ : }, ( ) sup{ : }, ( ) ( ) .t s s t t s s t t t tσ ρ µ σ= ∈ > = ∈ < = −   
A point t∈  is called left-dense if inft >   and ( )t tρ = , left-scattered if ( )t tρ < , right-dense if 
supt <   and ( )t tσ = , and right-scattered if ( )t tσ > . If   has a left-scattered maximum m , then 

\{ }k m=  ; otherwise k =  . If   has a right-scattered minimum m , then \{ }k m=  ; otherwise 
.k =   

A function :f →   is right-dense continuous provided it is continuous at right-dense point in   
and its left-side limits exist at left-dense points in  . If f  is continuous at each right-dense point 
and each left-dense point, then f is said to be a continuous function on  . 

Definition 2.1[8] Assume that :f →   is a function and let .t∈ Then we define ( )f t∆  to be the 
number (provided it exists) with the property that given any 0ε > ，there is a neighborhood U of t  
(i.e., ( , )U t tδ δ= − + ∩ for some 0δ > ) such that 

[ ( ( )) ( )] ( )[ ( ) ] | ( ) | for all .f t f s f t t s t s s Uσ σ ε σ∆− − − ≤ − ∈  

we call ( )f t∆  the delta derivative of f at t . The function f is delta differentiable on   provided 

( )f t∆  exists for all .t∈  The set of functions :f →  that are delta differentiable and whose delta 
derivative are rd-continuous functions is denoted by 1 1 1( ) ( , ).rd rd rdC C C= =    

Definition 2.2[8] A function :p →   is called regressive provided 1 ( ) ( ) 0t p tµ+ ≠  for all kt∈ . 
The set of all regressive and rd-continuous functions :p →  will be denoted by 

( ) ( , )= =     . We define the set ( , ) { :1 ( ) ( ) 0, }p t p t tµ+ += = ∈ + > ∀ ∈    . 
Definition 2.3[8] A time scale  is called an almost periodic time scale if 
: : , {0}.{ }t tτ τΠ = ∈ + ∈ ∀ ∈ ≠    
Throughout this paper, we restrict our discussion on almost periodic time scales. 
Definition 2.4[8] Let   be an almost periodic time scale. A function : nf →   is said to be 

almost periodic on  , if for any 0ε > , the set ( , ) { :| ( ) ( ) | , }E f f t f t tε τ τ ε= ∈Π + − < ∀ ∈  is 
relatively dense in , that is, for any 0ε > , there exists a constant ( ) 0l ε > such that each interval of 
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length ( )l ε contains at least one ( , )E fτ ε∈ such that | ( ) ( ) | ,f t f t tτ ε+ − < ∀ ∈ . The set ( , )E fε  is 
called the ε -translation set of ( )f t , τ  is called the ε -translation number of ( )f t , and ( )l ε is called 
the inclusion of ( , ).E fε  

Lemma 2.1[8] Let a +− ∈ . 

( )i  If ( ) ( )x t b ax t∆ ≤ − , then for 0t t> , 0 ( ) 0 ( ) 0( ) ( ) ( , ) (1 ( , )).a a
bx t x t e t t e t t
a− −≤ + −  In particular, if 0a > , we 

have limsup ( )
t

bx t
a→+∞

≤ . 

( )ii  If ( ) ( )x t b ax t∆ ≥ − , then for 0t t> , 0 ( ) 0 ( ) 0( ) ( ) ( , ) (1 ( , )).a a
bx t x t e t t e t t
a− −≥ + − In particular, if 0a > , we 

have liminf ( )
t

bx t
a→+∞

≥ . 

3. Permanence 
In this section, we establish some permanence results for system (1.3). Firstly, we provide the 

definition  of permanence. 
Definition 3.1 System (1.3) is said to be permanent if there exist positive constants 

* *

* *, , ,i i i ix x u u  
which are independent of the solutions of the system, such that any positive solution ( )X t of system 
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* *
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It follows from Lemma 2.1 ( )i , that 
*lim sup ( )i i
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x t x

→+∞
≤ . 

Then for any 0ε > , there exists a 0t ∈  such that *( )i ix t x ε≤ +  for all 0.t t≥ While, from the second 
equation of (1.3), we get  
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Letting 0ε → , we get 
*lim sup ( ) .i i
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≤  

Theorem 3.2 Assume that 1(H ) - 3(H )  hold, then every solution ( )X t of system (1.1) satisfies 

* *
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Proof  According to Theorem 3.1, for any 0ε > , there exists a 0t ∈ , for any 0t t>  and t∈  such 
that, * *( ) , ( ) .i i i iu t x x t uε ε≤ + ≤ +  Then for 0t t≥ , from the first equation of (1.3), we have 
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Now, we claim for any 0ε > , there exists a 0t ∈ , for any 0t t>  and t∈  such that,  
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Otherwise, there exists a 1 0t t>  and 1t ∈ , when 1t t≥ , such that, 
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and for 0 1[ , ) , ( ) 0t t t N t∈ ≤ . 
From (3.3) and (3.5), we get 

 1( ) 0.ix t∆ ≤    (3.6) 
But from 3(H ) and (3.1) we have 
 1( ) 0,ix t∆ >     
which is a contradiction  with (3.6). Thus, we have proved the claim. 

Then, from (3.2), we arrive that  
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Letting 0ε → , we get 
*
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For any 0ε > , there exists a 2t ∈ , for any 2t t>  and t∈  such that, 
*
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Owing to the second equation of system (1.3) we get, 
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Letting 0ε → , we get 
*

( ) ( )m m M
i i i i i iu t r f x e u t∆ ≥ + − , 

according to Lemma 2.1 ( )i , it follows that, 

*
lim inf ( )i it

u t u
→+∞

≥ . 

Obviously, we can obtain the following result. 
Theorem 3.3 Assume that 1(H ) - 3(H ) hold. Then system (1.3) is permanent. 

    We denote by Ω for all solutions ( )X t of system (1.3) satisfying 
* *

( ) ,i i ix x t x≤ ≤  
* *

( ) ,i i iu u t u≤ ≤ for 
, 1,2, , .t i N∈ = …  

Theorem 3.4 Assume 1(H ) - 3(H ) hold, then .Ω ≠ ∅  
Proof   Since ( ), ( ), ( ), ( ), ( ), ( )i i i i i ijb t d t r t e t f t a t and ( )ijc t all are  almost periodic functions on  , then 
there exists a sequence { }pτ τ= ⊆   with pτ → +∞  for p →+∞  such that  
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According to the Theorem 3.1 and Theorem 3.2, for any 0ε > , there exists a t+ ∈  such that 

* *

* *( ) , ( ) ,i i i i i ix x t x u u t uε ε ε ε− ≤ ≤ + − ≤ ≤ + for all t t+≥ . 
For , 1,2, ,pt t p Nτ+> − = … , we denote ( ) ( )ip i px t x t τ= +  and ( ) ( )ip i pu t u t τ= + . For any positive 
integer q , it is easy to see that there exist sequences  { ( ) : }ipx t p q≥ and { ( ) : }ipu t p q≥  such that the 
sequences { ( )}ipx t  and { ( )}ipi t  have subsequences, converging on any finite interval of   for  
p →+∞ , respectively. For the convenience of expression, we denoted by { ( )}ipx t  and { ( )}ipu t  again. 

Thus we have sequences { ( )}im t and { ( )}in t  such that 
 ( ) ( ), ( ) ( ),ip i ip ix t m t u t n t→ →  for p →+∞ .   (3.8) 

Combining with  
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from (3.7) and (3.8), for p →+∞ , (3.9) arrives to 
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  We can easily see that the solution of (3.10) 
1 2 1 2( ) ( ( ), ( ), , ( ), ( ), ( ), , ( ))T

N NY t m t m t m t n t n t n t= … … , 
is a solution of system (1.3), moreover for any 0ε >  and for all t∈  meet the following 
consideration 

* *

* *( ) , ( ) .i i i i i ix m t x u n t uε ε ε ε− ≤ ≤ + − ≤ ≤ +  

Since ε is an arbitrary small positive number, it follows that 
* *

* *( ) , ( ) ,i i i i i ix m t x u n t u≤ ≤ ≤ ≤ for all t∈. 
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